$\tt Bsgs$ 例题

如果您已经会 $bsgs$ 不妨来看看文末的注意。

求 $a^x \equiv b \pmod p$ 的一个最小正整数解。 $\tt p$ 是素数。

考虑进行分块,设 $m = \lfloor\sqrt p \rfloor$,那么让 $x$ 进行一下拆分得到。

$x = i\times m - j$。

之后对于两部分分别进行计算,放到哈希表中查询即可。

具体来说:

我们先将 $b \times a^j$ 存到 $\tt Hash$ 表中,然后去枚举每一个 $(a^{m})^i$ 去暴力匹配一下即可。

注意:

枚举 $i$ 要从 $0$ 开始到 $i$,为了计算是 $0$ 的情况。

特判 $m = 1, b = 1$ 直接返回 $0$ 即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
int ksm(int x,int mi,int p) {
int res(1);
if(mi == 0) return res % p;
while(mi) {
if(mi & 1) res = res * x % p;
mi >>= 1;
x = x * x % p;
}
return res;
}
int bsgs(int a,int b,int mod) {
b %= mod, a %= mod;
map<int, int> mp; mp.clear();
int m = sqrt(mod) + 1;
for(int now(b), i = 0; i < m; ++ i, now = now * a % mod)
mp[now] = i;
a = ksm(a, m, mod);
if(!a) return b == 0 ? 1 : -1;
// puts("ZZZ");
for(int now(a), i = 1; i <= m; ++ i, now = now * a % mod) {
// now = ksm(a, i, mod);
if(!mp.count(now)) continue;
int j = mp[now];
if(i * m - j >= 0) return i * m - j;
}
return -1;
}

$\tt exbsgs$ 例题

$a^x \equiv b \pmod p$ 这里 $p$ 不一定是素数。

我们先将 $b, p$ 变成互质,如果说除以了 $ct$ 次公约数,公约数乘积为 $gd$。

那么可以得到 $a^{x - ct} \times \frac{a^{ct}}{gd} \equiv \frac{b}{gd} \pmod p$。

之后为了方便将 $\frac{a^{ct}}{gd}$ 放到右边,之后左边本质上就可以用 $bsgs$ 了。

所以我们需要后面的这个是和 $p$ 互质的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
int exgcd(int a,int b,int &x,int &y) {
if(!b) return x = 1, y = 0, a;
int z = exgcd(b, a % b, y, x);
y -= a / b * x;
return z;
}

int ksm(int x,int mi,int mod) {
int res(1);
if(mi == 0) return res % mod;
while(mi) {
if(mi & 1) res = res * x % mod;
mi >>= 1;
x = x * x % mod;
}
return res;
}

int exbsgs(int a,int b,int mod) {
a %= mod, b %= mod;
if(b == 1 || mod == 1) return 0;
map<int ,int> mp; mp.clear();
int ct(0), x, y, ax(1);
for(int gd; gd = exgcd(a, mod, x, y), gd != 1; ) {
if(b % gd) return -1;
b /= gd, mod /= gd;
++ ct;
ax = ax * (a / gd) % mod;
if(ax == b) return ct;
}
exgcd(ax, mod, x, y);
int inv = (x % mod + mod) % mod;
b = b * inv % mod;
int m = sqrt(mod) + 1;
for(int i = 0, now(b); i < m; ++ i, now = now * a % mod)
mp[now] = i;
a = ksm(a, m, mod);
if(!a) return (b == 0) ? 1 + ct : -1;
for(int i = 0, now(1); i <= m; ++ i, now = now * a % mod) {
if(!mp.count(now)) continue;
int j = mp[now];
if(i * m - j >= 0) return i * m - j + ct;
}
return -1;
}

$\text{hdu2815 Mod Tree}$

这里需要注意一下 $b \ge mod$ 直接无解。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#include <bits/stdc++.h>
using namespace std;

//#define Fread
//#define Getmod

#ifdef Fread
char buf[1 << 21], *iS, *iT;
#define gc() (iS == iT ? (iT = (iS = buf) + fread (buf, 1, 1 << 21, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++)
#define getchar gc
#endif // Fread

template <typename T>
void r1(T &x) {
x = 0;
char c(getchar());
int f(1);
for(; c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
for(; '0' <= c && c <= '9';c = getchar()) x = (x * 10) + (c ^ 48);
x *= f;
}

#ifdef Getmod
const int mod = 1e9 + 7;
template <int mod>
struct typemod {
int z;
typemod(int a = 0) : z(a) {}
inline int inc(int a,int b) const {return a += b - mod, a + ((a >> 31) & mod);}
inline int dec(int a,int b) const {return a -= b, a + ((a >> 31) & mod);}
inline int mul(int a,int b) const {return 1ll * a * b % mod;}
typemod<mod> operator + (const typemod<mod> &x) const {return typemod(inc(z, x.z));}
typemod<mod> operator - (const typemod<mod> &x) const {return typemod(dec(z, x.z));}
typemod<mod> operator * (const typemod<mod> &x) const {return typemod(mul(z, x.z));}
typemod<mod>& operator += (const typemod<mod> &x) {*this = *this + x; return *this;}
typemod<mod>& operator -= (const typemod<mod> &x) {*this = *this - x; return *this;}
typemod<mod>& operator *= (const typemod<mod> &x) {*this = *this * x; return *this;}
int operator == (const typemod<mod> &x) const {return x.z == z;}
int operator != (const typemod<mod> &x) const {return x.z != z;}
};
typedef typemod<mod> Tm;
#endif

template <typename T,typename... Args> inline void r1(T& t, Args&... args) {
r1(t); r1(args...);
}

#define int long long
const int maxn = 2e5 + 5;
const int maxm = maxn << 1;

int ksm(int x,int mi,int mod) {
int res(1);
if(mi == 1) return 1 % mod;
while(mi) {
if(mi & 1) res = res * x % mod;
mi >>= 1;
x = x * x % mod;
}
return res;
}

int exgcd(int a,int b,int &x,int &y) {
if(!b) return x = 1, y = 0, a;
int d = exgcd(b, a % b, y, x);
y -= a / b * x;
return d;
}

int exbsgs(int a,int b,int mod) {
static map<int, int> mp; mp.clear();
a %= mod, b %= mod;
if(b == 1 || mod == 1) return 0; // case 1
int ax(1), ct(0), x, y;
for(int gd; gd = exgcd(a, mod, x, y), gd != 1; ) {
if(b % gd) return -1; // case 2
b /= gd, mod /= gd;
++ ct;
ax = ax * (a / gd) % mod;
if(ax == b) return ct;
}
exgcd(ax, mod, x, y), void(); // case 3
int inv = (x % mod + mod) % mod;
b = b * inv % mod;
int m = sqrt(mod) + 1;
for(int i = 0, now(b); i < m; ++ i, now = now * a % mod) {
mp[now] = i;
}
a = ksm(a, m, mod);
if(!a) return b == 0 ? 1 + ct : -1;//case 4
for(int i = 0, now(1); i <= m; ++ i, now = now * a % mod) {
if(!mp.count(now)) continue;
int j = mp[now];
if(i * m - j >= 0) return i * m - j + ct;
}
return -1;
}

signed main() {
// freopen("S.in", "r", stdin);
// freopen("S.out", "w", stdout);
int a, b, p;
while(scanf("%lld%lld%lld", &a, &p, &b) != EOF) {
if(b >= p) {
puts("Orz,I can’t find D!");
continue;
}
int ans = exbsgs(a, b, p);
if(ans == -1) puts("Orz,I can’t find D!");
else printf("%lld\n", ans);
}
return 0;
}

注意:

  • 特判 $b = 1, mod = 1$ 的情况。

  • 计算除以 $\gcd$ 的次数的时候,如果已经有 $\frac{a^{ct}}{gd} = \frac{b}{gd}$ 的情况直接返回即可。

  • 计算逆元的时候,不要将 $a$ 当做 $ax$。

  • 特判 $a = 0$,如果 $b \ne 0$ 就不合法。